
A Constructive Cascade Network with Adaptive
Regularisation

N.K. Treadgold and T.D. Gedeon

Department of Information Engineering,
Computer Science and Engineering,

University of New South Wales,
Sydney, Australia

{nickt, tom}@cse, unsw. edu. all

Abs t rac t . Determining the optimum amount of regulaxisation to ob-
tain the best generalisation performance infeedforward neural networks
is a difficult problem. This problem is addressed in the casper algorithm,
a constructive cascade algorithm that uses regulaxisation. Previously the
amount of regularisation used by this algorithm was set by a parameter
prior to training. This work explores the use of an adaptive method to
automatically set the amount of regularisation as the network is con-
structed. This technique is compared against the original method of user
optimised regulaxisation settings and is shown to maintain, and some-
times improve the generalisation results, while also constructing smaller
networks. Further benchmaxking on the Probenl series of data sets is
performed and the results compared to an optimised Cascade Correla-
tion algorithm.

1 I n t r o d u c t i o n

The casper algorithm [1, 2] has been shown to be a powerful method for training
feedforward neural networks. I t is a constructive algorithm tha t inserts hidden
neurons one at a t ime to form a cascade architecture, similar to Cascade Corre-
lation (cascor) [3]. The amount of regularisation in casper is set by a parameter .
The optimal value for this parameter is difficult to estimate prior to training, and
is generally obtained through trial and error. An inherent problem for the regu-
larisation of constructive networks is that the number of weights in the network
is continually changing, and thus even an optimal regularisation level for a given
size network will become redundant as the network grows. This work explores
the use of a method which adaptively sets the regularisation level as the network
is constructed. This paper will first give an introduction to the casper algorithm,
then describe the adaptive regularisation method and provide the results of some
comparat ive simulations. Finally the algorithm is benchmarked on the P roben l
[4] series of da ta sets and its performance is compared to an optimised Cascade
Correlation algorithm.

41

2 T h e c a s p e r A l g o r i t h m

The casper algorithm uses a version of the RPROP algorithm [5] for network
training. RPROP is a gradient descent algorithm which uses separate adaptive
learning rates for each weight. Each weight begins with an initial learning rate,
which is then adapted depending on the sign of the error gradient seen by the
weight as it traverses the error surface. This results in the update value for each
weight adaptively growing or shrinking as a result of the sign of the gradient
seen by that weight.

Casper constructs a cascade network in a similar manner to cascor: it begins
with all inputs connected directly to the outputs, and successively inserts neurons
which receive inputs from all prior hidden neurons and inputs. RPROP is used
to train the whole network each time a hidden neuron is added. The use of
RPROP is modified, however, such that when a new neuron is inserted, the
initial learning rates for the weights in the network are reset to values that
depend on the position of the weight in the network. The network is divided into
three separate regions, each with its own initial learning rate: L1, L2 and L3. The
first region is made up of all weights connecting to the new neuron from previous
hidden and input neurons. The second region consists of all weights connecting
the output of the new neuron to the output neurons~ The third region is made up
of the remaining weights, which consist of all weights connected to, and coming
from, the old hidden and input neurons.

The values of LI~ L2 and L3 are set such that L1 > > L2 > L3. The reason for
these settings is similar to the reason that cascor uses the correlation measure:
the high value of L1 as compared to L2 and L3 allows the new hidden neuron
to learn the remaining network error. Similarly, having L2 larger than L3 allows
the new neuron to reduce the network error, without too much interference from
other weights. Importantly, however, no weights are frozen, and hence if the
network can gain benefit by modifying an old weight, this occurs, albeit at an
initially slower rate than the weights connected to the new neuron. In addition,
the L1 weights are trained by a variation of RPROP termed SARPROP [6]. The
SARPROP algorithm is based on RPROP, but uses a noise factor to enhance
the ability of the network to escape from local minima.

In casper a new hidden neuron is installed after the decrease of the validation
error has fallen below a set amount. All hidden neurons use a symmetric logistic
activation function ranging between -0 .5 and 0.5. The output neuron activation
function depends on the type of analysis performed. Regression problems use a
linear activation function. Classification tasks use the standard logistic function
for single output classification tasks. For tasks with multiple outputs the softmax
activation function [7] is used. Similarly, the error function selected depends on
the problem. Regression problems use the standard sum of squares error function.
Classification problems use the cross-entropy function [8]. For classification tasks,
a 1-of-c coding scheme for c classes is used, where the output for the class to
be learnt is set to 1, and all other class outputs are set to 0. For a two class
classification task, a single output is used with the values 1 and 0 representing

42

the two classes. For multiple classes a winner-takes-all strategy is used in which
the output with the highest value designates the selected class.

The regularisation used in casper is implemented through a penalisation term
added to the error function as shown below:

43

where A sets the regularisation magnitude, and S is a Simulated Annealing (SA)
term. The SA term reduces the amount of decay as training proceeds, and is
reset each time a new neuron is added to the network.

3 I m p l e m e n t i n g A d a p t i v e R e g u l a r i s a t i o n

One method that would allow the amount of regularisation to change in con-
structive algorithms is to adapt this parameter as the network is trained. This
was done using the following method as applied to the casper algorithm. The
adaptation process relies on using three training stages for each new hidden neu-
ron added, instead of the usual single training stage. The validation results taken
after the completion of each training stage are then used to adapt the regulari-
sation levels for future network training. This process repeats as the network is
constructed.

For each new hidden neuron inserted into the network, three training stages
are performed. Each training stage is performed using the same method as the
casper algorithm, and is halted using the same criterion. The commencement
of a new training stage results in all R P R O P and SA parameters being reset
to their initial values. Importantly, however, the final weights from the previous
training stage are retained and act as the starting point for the next training
stage. The motivation for this is that it is likely to increase convergence speed,
and thereby construct smaller networks.

The regularisation level for the network once a new neuron is added is set
to the initial value, :ki, termed the initial decay value. This parameter takes the
form Ai = 10-% It is this initial decay value that is adapted as the network is
constructed. The first training stage uses the initial decay value. Each successive
stage uses a regularisation level tha t has been reduced by a factor of ten from the
previous stage. After each training stage the performance of the network on the
validation set is measured, and the network weights recorded. On completion of
the third training stage, the initial decay value is adapted as follows: if the best
performing regularisation level occurred during the first two training stages, the
initial decay value is increased by a factor of ten, else it is decreased by a factor
of ten. At this point the weights that produced the best validation results are
restored to the network. When the next neuron is added, the process repeats
using the newly adapted initial decay value.

The initial network with no hidden neurons is trained using a single training
stage with a regularisation level of a = O. The adaptation scheme begins with

43

the addition of the first hidden neuron, which is given an initial decay value of
a -- 2. The initial decay value is chosen to give a relatively high regularisation
level as this can easily be reduced through network growth and the adaptation
process~ The limits placed on the initial decay value are a -- 1 to 4, which
gives a total possible regularisation range of a = 1 to 6 (since there are three
training stages). The lower initial decay limit (a -- 4) was selected to stop the
regularisation level falling too low, which can occur in early stages of training
when the network is still learning the general features of the data set. The top
initial decay limit (a -- 1) was selected since convergence becomes difficult with
excessive regularisation levels.

For reasons of efficiency, if the validation result of the second stage is worse
than the first, the third training stage is not performed. In addition, if the vali-
dation results of the first training stage are worse than the best validation results
of the previous network architecture, the weights are reset to their previous val-
ues before this training stage was commenced. The regularisation level is then
reduced as normal, and the second training stage is started. This was done to
stop excessive regularisation levels distorting past learning.

This regularisation selection method allows the network to adapt the level
of regularisation as the network grows in size. The motivation for using this
adaption scheme is the relationship between good regularisation levels in similar
size networks. By finding a good regularisation level in a given network, it is
likely that a slightly larger network will benefit from a similar regularisation
level. The adaption process allows a good regularisation level to be found by
modifying the window of regularisation magnitudes that are examined. This
adaption process is biased towards selecting larger regularisation levels since the
initial decay value is increased if either of the first two training stages have the
best validation result. The reason for this bias is that as the network grows in
size, in general more regularisation will be required.

The motivation for reducing the regularisation level through each training
stage is that it allows the network to model the main features of the data set,
which can then be refined by lowering the regularisation level. This is the same
motivation for the use of the SA term in the regularisation function. The algo-
rithm incorporating this adaptive regularisation method will be termed acasper.

The parameter values for this algorithm were selected after some initial tuning
on the Two spirals [3] and Complex interaction [9] data sets. Some tuning was
also performed using the cancerl data set from the Probenl collection.

4 C o m p a r a t i v e S i m u l a t i o n s

In order to test the performance of acasper it was compared against casper on
three regression and two classification benchmarks. The regression data sets are
based on the Complex additive (Cadd), Complex interactive (Cif), and Harmonic
(Harm) functions [9]. Each data set is made up of a training set of size 225
randomly selected points over the input space [0, 1] 2, a validation set of size 110
similarly generated, and a test set of size 10,000 generated by uniformly sampling

44

the grid [0, 1] 2. Gaussian noise of 0 mean and 0.25 standard deviation was added
to the training and validation sets. The two classification benchmarks were the
Glass and Thyroid data sets, which are glass1 and thyroid1 respectively from
Probenl .

For each data set 50 training runs were performed for each algorithm using
different initial starting weights. The Mann-Whitney U test [10] was used to
compare results, with results significant to a 95% confidence level indicated in
bold. Training in both casper and acasper is halted when either the validation
error (measured after the installation of each hidden neuron) fails to decrease af-
ter the addition of 6 hidden neurons, or a maximum number of hidden neurons
have been installed. This maximum was set to 8 and 30 for the classification
and regression data sets respectively. The measure of computational cost used is
connection crossings (CC) which Fahlman [3] defines as the number of multiply-
accumulate steps required to propagate activation values forward through the
network, and error values backward. This measure is more appropriate for con-
structive networks than the number of epochs trained since it takes into account
varying network size.

The results on the test sets at the point where the best validation result
occurred for the constructed networks after the halting criterion was satisfied
are given in Tables 1 and 2. For the classification data sets this measure is the
percentage of misclassified patterns, while for the regression data sets it is the
Fraction of Variance Unexplained (FVU) [9], a measure proportional to total
sum of squares error. Also reported is the number of hidden neurons installed
at the point where the best validation result occurred, and the total number
of connection crossings performed when the halting criterion was reached. The
casper results reported are those that gave the best generalisation results from
a range of regnlarisation levels: letting A = 10 - a , a was varied from 1 to 5.

T a b l e 1. Comparative Results for the Classification Data Sets

Data Set Algorithm Property I
Test Error %

Glass casper Hidden Neurons
CC (xlO s)

Test Error %
Glass acasper Hidden Neurons

CC (x l0 s)

Test Error %
Thyroid casper Hidden Neurons

CC (x l0 s)
Test Error %

Thyroid aeasper Hidden Neurons
CC (x l0 s)

Mean I StDv [Median] Min] Max
28 .94 2.34 28.30 26.42 33.96
3.06 206 300 o oo 800
0 .52 0.00 0.52 0.52 0.52
30.68 2.61 30.19 26.42 35.85
4.18 2.21 4.00 1.00 8.00
1.33 0.09 1.32 1.11 1.50

1.68 0.23 1.61 1.33 2.29
7.18 1.37 8.00 2.00 8.00

25 .71 0.91 25.46 23.77 29.07
1.67 0.26 1.64 1.28 2.28
4 .64 2.34 5.00 1.00 8.00
69.34 3.80 69.48 60.00 77.38

45

Table 2. Comparative Results for the Regression Data Sets

Data Set

Cadd

[Algorithm

casper

Property [

Test FVU (x l0 - ")
Hidden Neurons

CC (x l0 s)
Test FVU (x l0 - ")

Cadd acasper Hidden Neurons
CC (x l0 s)

Test FVU (x l0 -2)
Cif casper Hidden Neurons

CC (x l0 s)
Test FVU (x l0 -~)

Cif acasper Hidden Neurons
CC (xl08)

Test FVU (x l0 -z)
Harm casper Hidden Neurons

CC (x l0 s)

Harm acasper
Test FVU (x l0 -2)

Hidden Neurons
CC (x l0 s)

Mean I StDv I Median I Min I Max
1.29 0.60 1.17 0.81 4.03
21.26 7.70 21.50 4.00 30.00
11.93 0.07 11.81 11.72 12.08
1.18 0.24 1.09 0.84 1.86

16.16 5.74 15.00 7.00 29.00
34.55 1.74 34.66 30.34 39.88

2.98 0.98 2.69 1.63 5.98
24.52 6.84 27.50 6.00 30.00
12.09 0.20 12.07 11.78 12.75
2.38 0.61 2.21 1.48 4.03

20.16 6.24 19.50 8.00 30.00
34.27 1 . 9 1 34.24 28.61 38.77

3.12 0.95 2.89 1.59 5.46
26.00 5.71 29.50 12.00 30.00
12.33 0.37 12.28 11.82 13.78
2.37 0.69 2.18 1.45 4.70

19.34 5.30 18.00 10.00 30.00
36.02 2.51 35.84 28.00 41.17

4.1 D i s c u s s i o n

In general the acasper algorithm is able to maintain or bet ter the generalisation
results obtained by the casper algorithm with a fixed, user optimised regulari-
sation level. The only data set where acasper performs significantly worse is the
Glass data set, although this reduction in performance is relatively small. The
good performance of acasper can be at tr ibuted to its ability to adapt the regu-
larisation level by taking into account such factors as the current network size
and the presence of noise. Figure I demonstrates acasper's ability to adapt regn-
larisation levels depending on the noise present in the data. This figure shows an
example of the A values selected by acasper on the Cif data set, with and without
added noise, for a typical training run. The regularisation magnitudes selected
for the noisy data set become greater as training proceeds, and are successful in
preventing the network over-fitting the data.

In terms of the network size constructed, the acasper algorithm maintains,
and often reduces the number of hidden neurons installed. The reduction is
sometimes large, as can be seen for the regression tasks. This can be at t r ibuted
to two factors. First, the acasper algorithm performs more training at each pe-
riod of network construction. This takes the form of restarting training with
different regularisation levels and with reset R P R O P and SA parameters. This
increases the chance of the network escaping :from the current (possibly local)
minimum and perhaps converging to a bet ter solution. Second, the adaptation
of the regularisation level may result in faster convergence in comparison to a
fixed level.

1 . 0 e + O 0

1 . 0 e - 0 1

i 1.0e-O~

1 .~-04

1 . 0 o - O S

, . O e - 0 6
0

46

cif - e - -
r ~ - -

A r -~ /'\ ~,, ,~/\ / \ / , , / \
i ~ ~, / ~ - - ~ ~ - - - ' ~- ~ r

. _ / "_/

1 0 3 0

Fig. 1. Regularisation Magnitudes Selected by acaspero

The main disadvantage of the adaptive regularisation method used in acasper

is the increase in computational cost. For the benchmark results obtained, this
increase is of the order of two to three in comparison to casper. The increase
in computational cost is expected to scale approximately linearly in comparison
to corresponding size networks trained by casper, since it is a result of at most
three additional training stages at each point of network construction. Part of
the increased cost of training acasper is balanced by its ability to construct
smaller networks than casper. The use of adaptive regularisation also removes
the need to select a regularisation level in casper. The computational cost of such
preliminary training is significant but not easily quantifiable, and not reflected
in the results quoted for casper.

4.2 Benchmark ing a c a s p e r

In order to allow comparison between the acasper algorithm and other neural
network algorithms, an additional series of benchmarking was performed on the
remaining data sets in the Probenl collection. The same benchmarking set-up
was used as for the previous comparisons, except the maximum network size for
the regression problems was set to eight. The four regression data sets in Probenl
are buildingl, flarel, heartal, and heartacl. The test results for these data sets
are given in terms of the squared error percentage as defined by Prechelt [4]:

Esep = 100 Omaz - N . : rain Ereg

where omax and omln are the maximum and minimum values of the outputs, N
is the number of training patterns, and c the number of training patterns.

To allow direct comparison with a well known constructive algorithm, the
results obtained by the cascor algorithm [3] are also given. These results were

47

obtained from benchmarking carried out in [11]. This version of c a s c o r incor-
porates a sophisticated implementation of early stopping. The results of these
simulations are give in Tables 3 and 4 which give the test and hidden unit results
respectively. Results which are significant to a 95% confidence level are printed
in bold. At this level, the flare results in Table 3 were given as significantly dif-
ferent by the Mann-Whitney U test, however the test scores were found to have
very different distributions, and hence this result was not treated as significant~

Table 3. Probenl Benchmarking: Test Error Percentage

Data Set Algorithm I Mean I StDv I Median I Min I Max]

cancerl acasper
cascor

caxdl acasper
c a s c o r

diabetesl acasper
cascor

genel acasper
Ca$COr

glassl acasper
cascor

heart1 acasper
cascor

heartcl acasper
C~8COT

horse1 acasper
C~SCOr

soybeanl acasper
CaBCOr

thyroidl acasper
CaSCOr

buildingl acasper
cascor

flarel acasper
C~SCOr

heartal acasper
C.~SCOT

heaxtas acasper
cascor

1.89 0.80 1.72 0.57 4.02
1.95 0.38 1.72 1.15 2.87

13.72 0.59 13.37 13.37 16.86
13.58 0.43 13.37 12.79 14.54
23.14 1 . 2 6 2 2 . 9 2 20.31 27.08
24.53 1 . 4 4 24.48 22.40 28.65
11.72 0.09 11 .73 11.60 11.85
13.38 0.47 13 .49 11.98 14.38
30.68 2 . 6 1 30.19 26.42 35.85
34.76 5.88 33.96 26.42 47.17
19.21 0.44 19 .13 16.96 20.00
19.89 1 . 5 8 20.44 16.09 22.17
18.85 1 . 1 4 18.67 18.67 26.67
19.47 1 . 2 8 18.67 18.67 24.00
32.46 0.71 32.97 29.67 34.07
26.37 2.58 26.37 20.88 31.87
7.89 1.03 7.65 5.29 10.00
9.46 0.86 9.41 7.65 11.77
1.67 0.26 1.64 1.28 2.28
3.03 1.15 2.67 2.11 6.56
0.64 0.02 0.64 0.61 0.71
0.82 0.23 0.72 0.49 1.42
0.53 0.01 0.52 0.52 0.58
0.53 0.01 0.53 0.51 0.55
4.74 0.10 4.69 4.67 5.23
4.62 0.15 4.60 4.43 5.02
2.75 0.14 2.72 2.62 3.11
2.87 0.44 2.70 2.48 4.25

It can be seen that a c a s p e r outperforms c a s c o r both in terms of test re-
sults and constructing smaller networks~ There are eight data sets where a c a s p e r

obtains significantly better test results than cascor, compared to two where cas-

t o r outperforms a c a s p e r (four with no significant difference). For all data sets
a c a s p e r was able to produce smaller networks than cascor , with significant re-

48

sults for twelve out of the fourteen data sets. There are some cases where the
difference is surprisingly large, for example the Soybean and Thyroid data sets.
One reason for this may be that the halting criteria for a c a s p e r specifies a max-
imum network size of eight, although in general this limit is rarely reached by
a c a s p e r during the benchmarking.

Table 4. Probenl Benchmarking: Hidden Units Used

Data Set Algorithm Mean StDv Median Min Max

cancerl acasper
CaSCOr

cardl acasper
C A ~ s c o r

diabetesl acasper
cascor

genel acasper
cascor

glassl acasper
c a s c o r

heartl acasper
~ 8 0 O r

heaxtcl acxLsper
C a $ c o r

horsel acasper
C O , 8 o o r

soybea~l acx~sper
C a S t o r

thyroidl acasper
c a 8 c o 7 "

buildingl acasper
cascor

flarel acasper
~ 8 o 9 r

heaxtal acasper
~ff, s c o r

heartacl acasper
C~SCOr

4.86 2.08 4.50 1.00 8.00
5.18 2.05 4.00 3.00 10.00
0.12 0.59 0.00 0.00 4.00
1.07 0.25 1.00 1.00 2.00
3.02 1.55 3.00 1.00 8.00
9.78 5.32 9.00 0.00 25.00
0.00 0.00 0.00 0.00 0.00
2.73 1.19 2.00 1.00 6.00
4.18 2.21 4.00 1.00 8.00
8.07 5.19 7.00 1.00 24.00
0.10 0.36 0.00 0.00 2.00
2.64 1.17 2.00 1.00 7.00
0.10 0.36 0.00 0.00 2.00
1.38 0.49 1.00 1.00 2.00
0.12 0.59 0.00 0.00 4.00
0.82 0.39 1.00 0.00 1.00
2.16 1.08 2.00 1.00 5.00
16.04 5.17 16 .00 6.00 24.00
4.64 2.34 5.00 1.00 8.00
25.04 8 . 7 1 27.00 2.00 44.00
6.36 2.15 7.00 1.00 8.00
9.27 9.73 6.00 0.00 29.00
1.30 1.59 1.00 0.00 6.00
2.63 0.67 3.00 2.00 4.00
0.40 0.57 0.00 0.00 2.00
2.77 1.72 2.00 0.00 7.00
0.20 0.86 0.00 0.00 5.00
1.47 0.73 1.00 0.00 3.00

Interestingly, many of the data sets are solved by a c a s p e r using very small
networks, often with no hidden units at all. This illustrates a major advantage
of using constructive networks: the simple solutions are tried first. It is often the
case tha t many real world data sets, such as the ones in Probenl , can be solved
by relatively simple networks.

49

5 Conclusion

The introduction of an adaptive regularisation scheme to the casper algorithm is
shown to maintain, and sometimes improve the generalisation results compared
to a fixed, user optimised regularisation setting. In addition, smaller networks
are generally constructed. In comparisons to an optimised version of cascor,
acasper is shown to improve generalisation results and construct smaller net-
works. One further advantage of acasper is that it performs automatic model
selection through automatic network construction and regularisationo This re-
moves the need for the user to select these parameters, and in the process makes
the acasper algorithm free of parameters which must be optimised prior to the
commencement of training.

References

1. No K. Treadgold and T. D. Gedeon, "A cascade network algorithm employing
progressive rprop," in Proe. of the Int. Work-Conf. on Artificial and Natural Neural
Systems, Lanzarote, Spain, June 1997, pp. 723-732.

2. N~ K. Treadgold and T. D. Gedeon, "Extending casper: A regression survey," in
Proc. of the Int. Conf. on Neural Information Processing, Dunedin, New Zealand,
Nov. 1997, pp. 310-313.

3. S. E. Fahlman and C. Lebiere, "The Cascade-Correlation learning architecture,"
in Advances in Neural Information Processing Systems 2, D. S. Touretzky, Ed. San
Mateo, CA: Morgan Kanfmann, 1990, pp. 524-532.

4. L. Prechelt, "Probenl - a set of neural network benchmark problems and bench-
marking rules," Tech. Rep. 21/94, Fakult~it fiir Informatik, Universit~it Kahlsruhe,
1994.

5. M. Riedmiller and H. Braun, "A direct adaptive method for faster backpropagation
learning: The RPROP algorithm~" in Proc. o f the IEEE Int. Conf. on Neural
Networks, San Francisco, CA, Apr. 1993, pp. 586-591.

6. N. K. Treadgold and T. D. Gedeon, "Simulated annealing and weight decay in
adaptive learning: The sarprop algorithm," IEEE Transactions on Neural Net-
works, vol. 9, pp. 662-668, July 1998.

7. J. S. Bridle, "Probabilistic interpretation of feedforward classification network out-
puts, with relationships to statistical pattern recognition," in Neuro-computing:
Algorithms, Architectures and Applications, F: Fogelman Soulid and J. H~rault,
Eds. Berlin: Springer-Verlag, 1990, pp. 227-236~

8. C. Bishop, Neural Networks for Pattern Recognition. Oxford: Oxford University
Press, 1995.

9. J.-N. Hwang, S.-R. Lay, M. Maechler, R. D~ Martin, and J. Schimert, "Regression
modeling in back-propagation and projection pursuit learning," IEEE Transactions
on Neural Networks, vol. 5, pp. 342-353, May 1994.

10. R. Steel and J. Torrie, Principles and Procedures o f Statistics A Biomedical Ap-
proach. Singapore: McGraw-Hill, 1980.

11. L. Prechelt, "Investigation of the cascor family of learning algorithms," Neural
Networks, vol. 10, no. 5, ppo 885-896, 1997.

