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Abs t rac t .  Determining the optimum amount of regulaxisation to ob- 
tain the best generalisation performance infeedforward neural networks 
is a difficult problem. This problem is addressed in the casper algorithm, 
a constructive cascade algorithm that uses regulaxisation. Previously the 
amount of regularisation used by this algorithm was set by a parameter 
prior to training. This work explores the use of an adaptive method to 
automatically set the amount of regularisation as the network is con- 
structed. This technique is compared against the original method of user 
optimised regulaxisation settings and is shown to maintain, and some- 
times improve the generalisation results, while also constructing smaller 
networks. Further benchmaxking on the Probenl series of data sets is 
performed and the results compared to an optimised Cascade Correla- 
tion algorithm. 

1 I n t r o d u c t i o n  

The casper algorithm [1, 2] has been shown to be a powerful method for training 
feedforward neural networks. I t  is a constructive algorithm tha t  inserts hidden 
neurons one at a t ime to form a cascade architecture, similar to Cascade Corre- 
lation (cascor) [3]. The amount  of regularisation in casper is set by a parameter .  
The optimal  value for this parameter  is difficult to estimate prior to training, and 
is generally obtained through trial and error. An inherent problem for the regu- 
larisation of constructive networks is that  the number of weights in the network 
is continually changing, and thus even an optimal  regularisation level for a given 
size network will become redundant  as the network grows. This work explores 
the use of a method which adaptively sets the regularisation level as the network 
is constructed. This paper  will first give an introduction to the casper algorithm, 
then describe the adaptive regularisation method and provide the results of some 
comparat ive simulations. Finally the algorithm is benchmarked on the P roben l  
[4] series of da ta  sets and its performance is compared to an optimised Cascade 
Correlation algorithm. 
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2 T h e  c a s p e r  A l g o r i t h m  

The casper algorithm uses a version of the RPROP algorithm [5] for network 
training. RPROP is a gradient descent algorithm which uses separate adaptive 
learning rates for each weight. Each weight begins with an initial learning rate, 
which is then adapted depending on the sign of the error gradient seen by the 
weight as it traverses the error surface. This results in the update value for each 
weight adaptively growing or shrinking as a result of the sign of the gradient 
seen by that  weight. 

Casper constructs a cascade network in a similar manner to cascor: it begins 
with all inputs connected directly to the outputs, and successively inserts neurons 
which receive inputs from all prior hidden neurons and inputs. RPROP is used 
to train the whole network each time a hidden neuron is added. The use of 
RPROP is modified, however, such that  when a new neuron is inserted, the 
initial learning rates for the weights in the network are reset to values that  
depend on the position of the weight in the network. The network is divided into 
three separate regions, each with its own initial learning rate: L1, L2 and L3. The 
first region is made up of all weights connecting to the new neuron from previous 
hidden and input neurons. The second region consists of all weights connecting 
the output  of the new neuron to the output  neurons~ The third region is made up 
of the remaining weights, which consist of all weights connected to, and coming 
from, the old hidden and input neurons. 

The values of LI~ L2 and L3 are set such that  L1 > >  L2 > L3. The reason for 
these settings is similar to the reason that  cascor uses the correlation measure: 
the high value of L1 as compared to L2 and L3 allows the new hidden neuron 
to learn the remaining network error. Similarly, having L2 larger than L3 allows 
the new neuron to reduce the network error, without too much interference from 
other weights. Importantly, however, no weights are frozen, and hence if the 
network can gain benefit by modifying an old weight, this occurs, albeit at  an 
initially slower rate than the weights connected to the new neuron. In addition, 
the L1 weights are trained by a variation of RPROP termed SARPROP [6]. The 
SARPROP algorithm is based on RPROP, but uses a noise factor to enhance 
the ability of the network to escape from local minima. 

In casper a new hidden neuron is installed after the decrease of the validation 
error has fallen below a set amount. All hidden neurons use a symmetric logistic 
activation function ranging between -0 .5  and 0.5. The output  neuron activation 
function depends on the type of analysis performed. Regression problems use a 
linear activation function. Classification tasks use the standard logistic function 
for single output  classification tasks. For tasks with multiple outputs the softmax 
activation function [7] is used. Similarly, the error function selected depends on 
the problem. Regression problems use the standard sum of squares error function. 
Classification problems use the cross-entropy function [8]. For classification tasks, 
a 1-of-c coding scheme for c classes is used, where the output  for the class to 
be learnt is set to 1, and all other class outputs are set to 0. For a two class 
classification task, a single output  is used with the values 1 and 0 representing 
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the two classes. For multiple classes a winner-takes-all strategy is used in which 
the output  with the highest value designates the selected class. 

The regularisation used in casper is implemented through a penalisation term 
added to the error function as shown below: 
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where A sets the regularisation magnitude, and S is a Simulated Annealing (SA) 
term. The SA term reduces the amount of decay as training proceeds, and is 
reset each time a new neuron is added to the network. 

3 I m p l e m e n t i n g  A d a p t i v e  R e g u l a r i s a t i o n  

One method that  would allow the amount of regularisation to change in con- 
structive algorithms is to adapt this parameter as the network is trained. This 
was done using the following method as applied to the casper algorithm. The 
adaptation process relies on using three training stages for each new hidden neu- 
ron added, instead of the usual single training stage. The validation results taken 
after the completion of each training stage are then used to adapt the regulari- 
sation levels for future network training. This process repeats as the network is 
constructed. 

For each new hidden neuron inserted into the network, three training stages 
are performed. Each training stage is performed using the same method as the 
casper algorithm, and is halted using the same criterion. The commencement 
of a new training stage results in all R P R O P  and SA parameters being reset 
to their initial values. Importantly, however, the final weights from the previous 
training stage are retained and act as the starting point for the next training 
stage. The motivation for this is that  it is likely to increase convergence speed, 
and thereby construct smaller networks. 

The regularisation level for the network once a new neuron is added is set 
to the initial value, :ki, termed the initial decay value. This parameter  takes the 
form Ai = 10-% It is this initial decay value that  is adapted as the network is 
constructed. The first training stage uses the initial decay value. Each successive 
stage uses a regularisation level tha t  has been reduced by a factor of ten from the 
previous stage. After each training stage the performance of the network on the 
validation set is measured, and the network weights recorded. On completion of 
the third training stage, the initial decay value is adapted as follows: if the best 
performing regularisation level occurred during the first two training stages, the 
initial decay value is increased by a factor of ten, else it is decreased by a factor 
of ten. At this point the weights that  produced the best validation results are 
restored to the network. When the next neuron is added, the process repeats 
using the newly adapted initial decay value. 

The initial network with no hidden neurons is trained using a single training 
stage with a regularisation level of a = O. The adaptation scheme begins with 
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the addition of the first hidden neuron, which is given an initial decay value of 
a -- 2. The initial decay value is chosen to give a relatively high regularisation 
level as this can easily be reduced through network growth and the adaptation 
process~ The limits placed on the initial decay value are a -- 1 to 4, which 
gives a total possible regularisation range of a = 1 to 6 (since there are three 
training stages). The lower initial decay limit (a -- 4) was selected to stop the 
regularisation level falling too low, which can occur in early stages of training 
when the network is still learning the general features of the data  set. The top 
initial decay limit (a -- 1) was selected since convergence becomes difficult with 
excessive regularisation levels. 

For reasons of efficiency, if the validation result of the second stage is worse 
than the first, the third training stage is not performed. In addition, if the vali- 
dation results of the first training stage are worse than the best validation results 
of the previous network architecture, the weights are reset to their previous val- 
ues before this training stage was commenced. The regularisation level is then 
reduced as normal, and the second training stage is started. This was done to 
stop excessive regularisation levels distorting past learning. 

This regularisation selection method allows the network to adapt the level 
of regularisation as the network grows in size. The motivation for using this 
adaption scheme is the relationship between good regularisation levels in similar 
size networks. By finding a good regularisation level in a given network, it is 
likely that  a slightly larger network will benefit from a similar regularisation 
level. The adaption process allows a good regularisation level to be found by 
modifying the window of regularisation magnitudes that  are examined. This 
adaption process is biased towards selecting larger regularisation levels since the 
initial decay value is increased if either of the first two training stages have the 
best validation result. The reason for this bias is that  as the network grows in 
size, in general more regularisation will be required. 

The motivation for reducing the regularisation level through each training 
stage is that  it allows the network to model the main features of the data  set, 
which can then be refined by lowering the regularisation level. This is the same 
motivation for the use of the SA term in the regularisation function. The algo- 
rithm incorporating this adaptive regularisation method will be termed acasper. 

The parameter values for this algorithm were selected after some initial tuning 
on the Two spirals [3] and Complex interaction [9] data  sets. Some tuning was 
also performed using the cancerl data  set from the Probenl  collection. 

4 C o m p a r a t i v e  S i m u l a t i o n s  

In order to test the performance of acasper it was compared against casper on 
three regression and two classification benchmarks. The regression data sets are 
based on the Complex additive (Cadd), Complex interactive (Cif), and Harmonic 
(Harm) functions [9]. Each data set is made up of a training set of size 225 
randomly selected points over the input space [0, 1] 2, a validation set of size 110 
similarly generated, and a test set of size 10,000 generated by uniformly sampling 
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the grid [0, 1] 2. Gaussian noise of 0 mean and 0.25 standard deviation was added 
to the training and validation sets. The  two classification benchmarks were the 
Glass and Thyroid data  sets, which are glass1 and thyroid1 respectively from 
Probenl .  

For each data  set 50 training runs were performed for each algorithm using 
different initial starting weights. The Mann-Whitney U test [10] was used to 
compare results, with results significant to a 95% confidence level indicated in 
bold. Training in both casper and acasper is halted when either the validation 
error (measured after the installation of each hidden neuron) fails to decrease af- 
ter the addition of 6 hidden neurons, or a maximum number of hidden neurons 
have been installed. This maximum was set to 8 and 30 for the classification 
and regression data  sets respectively. The measure of computational cost used is 
connection crossings (CC) which Fahlman [3] defines as the number of multiply- 
accumulate steps required to propagate activation values forward through the 
network, and error values backward. This measure is more appropriate for con- 
structive networks than the number of epochs trained since it takes into account 
varying network size. 

The results on the test sets at the point where the best validation result 
occurred for the constructed networks after the halting criterion was satisfied 
are given in Tables 1 and 2. For the classification data  sets this measure is the 
percentage of misclassified patterns, while for the regression data  sets it is the 
Fraction of Variance Unexplained (FVU) [9], a measure proportional to total  
sum of squares error. Also reported is the number of hidden neurons installed 
at the point where the best validation result occurred, and the total  number 
of connection crossings performed when the halting criterion was reached. The 
casper results reported are those that  gave the best generalisation results from 
a range of regnlarisation levels: letting A = 10 - a ,  a was varied from 1 to 5. 

T a b l e  1. Comparative Results for the Classification Data Sets 

Data Set Algorithm Property I 
Test Error % 

Glass casper Hidden Neurons 
CC (xlO s) 

Test Error % 
Glass acasper Hidden Neurons 

CC (x l0  s) 

Test Error % 
Thyroid casper Hidden Neurons 

CC (x l0  s) 
Test Error % 

Thyroid aeasper Hidden Neurons 
CC (x l0  s) 

Mean I StDv [Median ] Min]  Max 
28 .94  2.34 28.30 26.42 33.96 
3.06 206  300  o oo 800  
0 .52  0.00 0.52 0.52 0.52 
30.68 2.61 30.19 26.42 35.85 
4.18 2.21 4.00 1.00 8.00 
1.33 0.09 1.32 1.11 1.50 

1.68 0.23 1.61 1.33 2.29 
7.18 1.37 8.00 2.00 8.00 

25 .71  0.91 25.46 23.77 29.07 
1.67 0.26 1.64 1.28 2.28 
4 .64  2.34 5.00 1.00 8.00 
69.34 3.80 69.48 60.00 77.38 
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Table 2. Comparative Results for the Regression Data Sets 

Data Set 

Cadd 

[ Algorithm 

casper 

Property [ 

Test FVU (x l0 - " )  
Hidden Neurons 

CC (x l0  s) 
Test FVU (x l0 - " )  

Cadd acasper Hidden Neurons 
CC (x l0  s) 

Test FVU (x l0  -2) 
Cif casper Hidden Neurons 

CC (x l0  s) 
Test FVU (x l0  -~) 

Cif acasper Hidden Neurons 
CC (xl08) 

Test FVU (x l0  -z) 
Harm casper Hidden Neurons 

CC (x l0  s) 

Harm acasper 
Test FVU (x l0  -2) 

Hidden Neurons 
CC (x l0  s) 

Mean I StDv I Median I Min I Max 
1.29 0.60 1.17 0.81 4.03 
21.26 7.70 21.50 4.00 30.00 
11.93 0.07 11.81 11.72 12.08 
1.18 0.24 1.09 0.84 1.86 

16.16 5.74 15.00 7.00 29.00 
34.55 1.74 34.66 30.34 39.88 

2.98 0.98 2.69 1.63 5.98 
24.52 6.84 27.50 6.00 30.00 
12.09 0.20 12.07 11.78 12.75 
2.38 0.61 2.21 1.48 4.03 

20.16 6.24 19.50 8.00 30.00 
34.27 1 . 9 1  34.24 28.61 38.77 

3.12 0.95 2.89 1.59 5.46 
26.00 5.71 29.50 12.00 30.00 
12.33 0.37 12.28 11.82 13.78 
2.37 0.69 2.18 1.45 4.70 

19.34 5.30 18.00 10.00 30.00 
36.02 2.51 35.84 28.00 41.17 

4.1 D i s c u s s i o n  

In general the acasper algorithm is able to maintain or bet ter  the generalisation 
results obtained by the casper algorithm with a fixed, user optimised regulari- 
sation level. The only data  set where acasper performs significantly worse is the 
Glass data  set, although this reduction in performance is relatively small. The 
good performance of acasper can be at tr ibuted to its ability to adapt the regu- 
larisation level by taking into account such factors as the current network size 
and the presence of noise. Figure I demonstrates acasper's ability to adapt  regn- 
larisation levels depending on the noise present in the data. This figure shows an 
example of the A values selected by acasper on the Cif data  set, with and without 
added noise, for a typical training run. The regularisation magnitudes selected 
for the noisy data  set  become greater as training proceeds, and are successful in 
preventing the network over-fitting the data. 

In terms of the network size constructed, the acasper algorithm maintains, 
and often reduces the number of hidden neurons installed. The reduction is 
sometimes large, as can be seen for the regression tasks. This can be at t r ibuted 
to two factors. First, the acasper algorithm performs more training at each pe- 
riod of network construction. This takes the form of restarting training with 
different regularisation levels and with reset R P R O P  and SA parameters.  This 
increases the chance of the network escaping :from the current (possibly local) 
minimum and perhaps converging to a bet ter  solution. Second, the adaptation 
of the regularisation level may result in faster convergence in comparison to a 
fixed level. 
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Fig. 1. Regularisation Magnitudes Selected by acaspero 

The main disadvantage of the adaptive regularisation method used in acasper 

is the increase in computational cost. For the benchmark results obtained, this 
increase is of the order of two to three in comparison to casper. The increase 
in computational cost is expected to scale approximately linearly in comparison 
to corresponding size networks trained by casper, since it is a result of at most 
three additional training stages at each point of network construction. Part of 
the increased cost of training acasper is balanced by its ability to construct 
smaller networks than casper. The use of adaptive regularisation also removes 
the need to select a regularisation level in casper. The computational cost of such 
preliminary training is significant but not easily quantifiable, and not reflected 
in the results quoted for casper. 

4.2 Benchmark ing  a c a s p e r  

In order to allow comparison between the acasper algorithm and other neural 
network algorithms, an additional series of benchmarking was performed on the 
remaining data sets in the Probenl collection. The same benchmarking set-up 
was used as for the previous comparisons, except the maximum network size for 
the regression problems was set to eight. The four regression data sets in Probenl 
are buildingl, flarel, heartal, and heartacl. The test results for these data sets 
are given in terms of the squared error percentage as defined by Prechelt [4]: 

Esep = 100 Omaz - N . :  rain Ereg 

where omax and omln are the maximum and minimum values of the outputs, N 
is the number of training patterns, and c the number of training patterns. 

To allow direct comparison with a well known constructive algorithm, the 
results obtained by the cascor algorithm [3] are also given. These results were 
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obtained from benchmarking carried out in [11]. This version of c a s c o r  incor- 
porates a sophisticated implementation of early stopping. The results of these 
simulations are give in Tables 3 and 4 which give the test and hidden unit results 
respectively. Results which are significant to a 95% confidence level are printed 
in bold. At this level, the flare results in Table 3 were given as significantly dif- 
ferent by the Mann-Whitney U test, however the test scores were found to have 
very different distributions, and hence this result was not treated as significant~ 

Table 3. Probenl Benchmarking: Test Error Percentage 

Data Set Algorithm I Mean I StDv I Median I Min I Max ] 

cancerl acasper 
cascor 

caxdl acasper 
c a s c o r  

diabetesl acasper 
cascor 

genel acasper 
Ca$COr  

glassl acasper 
cascor 

heart1 acasper 
cascor 

heartcl acasper 
C~8COT 

horse1 acasper 
C~SCOr 

soybeanl acasper 
CaBCOr  

thyroidl acasper 
CaSCOr  

buildingl acasper 
cascor 

flarel acasper 
C~SCOr  

heartal acasper 
C.~SCOT 

heaxtas acasper 
cascor 

1.89 0.80 1.72 0.57 4.02 
1.95 0.38 1.72 1.15 2.87 

13.72 0.59 13.37 13.37 16.86 
13.58 0.43 13.37 12.79 14.54 
23.14 1 . 2 6  2 2 . 9 2  20.31 27.08 
24.53 1 . 4 4  24.48 22.40 28.65 
11.72 0.09 11 .73  11.60 11.85 
13.38 0.47 13 .49  11.98 14.38 
30.68 2 . 6 1  30.19 26.42 35.85 
34.76 5.88 33.96 26.42 47.17 
19.21 0.44 19 .13  16.96 20.00 
19.89 1 . 5 8  20.44 16.09 22.17 
18.85 1 . 1 4  18.67 18.67 26.67 
19.47 1 . 2 8  18.67 18.67 24.00 
32.46 0.71 32.97 29.67 34.07 
26.37 2.58 26.37 20.88 31.87 
7.89 1.03 7.65 5.29 10.00 
9.46 0.86 9.41 7.65 11.77 
1.67 0.26 1.64 1.28 2.28 
3.03 1.15 2.67 2.11 6.56 
0.64 0.02 0.64 0.61 0.71 
0.82 0.23 0.72 0.49 1.42 
0.53 0.01 0.52 0.52 0.58 
0.53 0.01 0.53 0.51 0.55 
4.74 0.10 4.69 4.67 5.23 
4.62 0.15 4.60 4.43 5.02 
2.75 0.14 2.72 2.62 3.11 
2.87 0.44 2.70 2.48 4.25 

It can be seen that  a c a s p e r  outperforms c a s c o r  both in terms of test re- 
sults and constructing smaller networks~ There are eight data  sets where a c a s p e r  

obtains significantly better test results than cascor,  compared to two where cas-  

t o r  outperforms a c a s p e r  (four with no significant difference). For all data sets 
a c a s p e r  was able to produce smaller networks than cascor ,  with significant re- 
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sults for twelve out of the fourteen data  sets. There are some cases where the 
difference is surprisingly large, for example the Soybean and Thyroid data  sets. 
One reason for this may be that  the halting criteria for a c a s p e r  specifies a max- 
imum network size of eight, although in general this limit is rarely reached by 
a c a s p e r  during the benchmarking. 

Table 4. Probenl Benchmarking: Hidden Units Used 

Data Set Algorithm Mean StDv Median Min Max 

cancerl acasper 
CaSCOr 

cardl acasper 
C A ~ s c o r  

diabetesl acasper 
cascor 

genel acasper 
cascor 

glassl acasper 
c a s c o r  

heartl acasper 
~ 8 0 O r  

heaxtcl acxLsper 
C a $ c o r  

horsel acasper 
C O , 8 o o r  

soybea~l acx~sper 
C a S t o r  

thyroidl acasper 
c a 8 c o 7 "  

buildingl acasper 
cascor 

flarel acasper 
~ 8 o 9 r  

heaxtal acasper 
~ff, s c o r  

heartacl acasper 
C~SCOr 

4.86 2.08 4.50 1.00 8.00 
5.18 2.05 4.00 3.00 10.00 
0.12 0.59 0.00 0.00 4.00 
1.07 0.25 1.00 1.00 2.00 
3.02 1.55 3.00 1.00 8.00 
9.78 5.32 9.00 0.00 25.00 
0.00 0.00 0.00 0.00 0.00 
2.73 1.19 2.00 1.00 6.00 
4.18 2.21 4.00 1.00 8.00 
8.07 5.19 7.00 1.00 24.00 
0.10 0.36 0.00 0.00 2.00 
2.64 1.17 2.00 1.00 7.00 
0.10 0.36 0.00 0.00 2.00 
1.38 0.49 1.00 1.00 2.00 
0.12 0.59 0.00 0.00 4.00 
0.82 0.39 1.00 0.00 1.00 
2.16 1.08 2.00 1.00 5.00 
16.04 5.17 16 .00  6.00 24.00 
4.64 2.34 5.00 1.00 8.00 
25.04 8 . 7 1  27.00 2.00 44.00 
6.36 2.15 7.00 1.00 8.00 
9.27 9.73 6.00 0.00 29.00 
1.30 1.59 1.00 0.00 6.00 
2.63 0.67 3.00 2.00 4.00 
0.40 0.57 0.00 0.00 2.00 
2.77 1.72 2.00 0.00 7.00 
0.20 0.86 0.00 0.00 5.00 
1.47 0.73 1.00 0.00 3.00 

Interestingly, many of the data  sets are solved by a c a s p e r  using very small 
networks, often with no hidden units at all. This illustrates a major advantage 
of using constructive networks: the simple solutions are tried first. It is often the 
case tha t  many real world data sets, such as the ones in Probenl ,  can be solved 
by relatively simple networks. 
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5 Conclusion 

The introduction of an adaptive regularisation scheme to the casper algorithm is 
shown to maintain, and sometimes improve the generalisation results compared 
to a fixed, user optimised regularisation setting. In addition, smaller networks 
are generally constructed. In comparisons to an optimised version of cascor, 
acasper is shown to improve generalisation results and construct smaller net- 
works. One further advantage of acasper is that  it performs automatic model 
selection through automatic network construction and regularisationo This re- 
moves the need for the user to select these parameters,  and in the process makes 
the acasper algorithm free of parameters which must be optimised prior to the 
commencement of training. 
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